MyT[™] platform-identified PRAME TCRs for T cell therapy demonstrate superior efficacy and best-in-class potential compared to clinical benchmarks

Lia Walcher, Lena Immisch, Mira Heichenko, Alexei Leliavski, Robert Höltzel, Sharesta Khoenkhoen, Niklas Fellmer, Elisa Kieback, Lorenz Knackstedt*, Lucia Poncette*

T-knife Therapeutics Inc., San Francisco, USA

Background

PRAME is a clinically validated target for T cell receptor-modified T cell (TCR-T) therapy with high prevalence in multiple solid tumor indications. A best-in-class, high-affinity and high-specificity PRAME-directed TCR was generated using T-knife's MyT platform, for use in next-generation TCR-T therapy targeting PRAME expressing indications.

Methods

We identified PRAME-directed TCRs using the MyT platform, a TCR discovery engine based on transgenic mice expressing the human TCR repertoire with the ability to overcome central tolerance. Reactive TCR candidates were identified by rapid throughput screening using a reporter cell line. Selected TCR candidates were subsequently expressed in primary CD4 and CD8 T cells in combination with a WT CD8 co-receptor (CoR) via retroviral transduction. The T cells were characterized for peptide dose-response, cytokine release and cytotoxicity. We performed in-depth TCR safety profiling by rapid alloreactivity screening of single-HLA-transfected cells and by positional mutagenesis scanning (X-scans) to assess potential cross-reactivity. Finally, we supercharged TCRmodified T cells by co-expression with a single-chain CD8 CoR with built-in co-stimulation (Co-stim CD8 CoR, see poster #4868) and a FAS-TNFR switch receptor (see poster #4867) using CRISPR-Cas9 gene editing combined with knockout of the endogenous TCR (see poster #3198).

mice immunized with full-length PRAME (n = 6) with specific PRAME peptides resulted in immune responses against several HLA-A*02:01-restricted epitopes of PRAME as detected by IFN-γ secretion, wherein SLL_{425–433} was the most dominant epitope. Screening of TCR candidates from the 6 mice confirmed that most TCRs were specific for the SLL epitope. (C) Using a reporter cell-based assay, we screened the 158 most frequent TCR clonotypes isolated from responder mice (n = 33) for their reactivity towards T2 cells loaded with 10⁻⁵ M SLL peptide at an E:T-ratio of 1:1. The threshold for reactivity was defined as the average background signal (T2 w/o peptide) + 3xSD (dashed line). We identified 85 reactive TCRs (green) with a broad reactivity range towards the SLL epitope of PRAME. We selected the most reactive TCRs for in-depth characterization in vitro.

MyT TCRs show high avidity, high cytokine secretion, and high cytotoxicity against PRAME-expressing cancer cell lines

Fig. 2: High efficacy of MyT TCRs in peptide dose-response assays, IFN-γ release and cytotoxicity against cancer cells. Ten selected TCR candidates were co-expressed with WT CD8 CoR in T cells from healthy donors (mix of CD4 and CD8 T cells). (A, B) IFN-y production of TCR transduced T cells was assessed upon stimulation with SLL-peptide-loaded T2 cells (A) or a range of tumor cell lines with natural PRAME expression (B) at an E:T-ratio of 1:1. (C) TCR-T cells were co-cultured with GFP-expressing NCI-H1703 cells at an E:T-ratio of 1:1 and relative target cell growth was quantified by monitoring green fluorescence area on an IncuCyte live imaging microscope. Target cells cultured with control-transduced T cells or T cells cultured without target cells or target cells cultured without T cells served as negative controls. PMA/Ionomycin stimulation served as positive control. Data are shown as means of n = 3donors ± SEM. Asterisks indicate cell lines transduced with HLA-A*02:01.

Reactive MyT TCRs

Non-reactive MyT TCRs

Fig. 3: Benchmarking of MyT TCRs with peer TCRs shows higher TCR expression and IFN-γ release and similar or superior cytotoxicity against cancer cells. MyT TCRs 1 and 2, as well as clinical- and preclinical-stage peer TCRs were co-expressed with WT CD8 CoR in T cells from healthy donors (mix of CD4 and CD8 T cells). Peer TCRs were selected from publicly disclosed sequences. (A) Functional TCR expression was quantified by flow cytometric analysis of MHC-Dextramer binding. (B) IFN-γ production of TCR transduced T cells was assessed upon stimulation with a range of tumor cell lines with natural PRAME expression at an E:Tratio of 1:1. (C) TCR-T cells were co-cultured with GFP-expressing NCI-H1703 or Hs695T cells at an E:T-ratio of 1:1, and green fluorescence area was monitored on an IncuCyte live imaging microscope. At indicated time points, fresh target cells were added to rechallenge TCR-T cells. Data are shown as means of n = 2-5 donors ± SEM. Asterisks indicate cell lines transduced with HLA-A*02:01.

Supercharging PRAME TCR-T cells by dual armoring using a gene editing process including endogenous TCR knockout further enhances expression and efficacy of lead candidate TCR1 without impacting safety

www.t-knife.com

*shared last authors

Fig. 4: High on-target specificity of MyT TCRs as assessed by X-scan, homologous epitope testing and allo-reactivity screening. MyT TCRs 1 and 2 were co-expressed with WT CD8 CoR in T cells from healthy donors (mix of CD4 and CD8 T cells). (A) IFN-y production of TCR transduced T cells was assessed upon stimulation with T2 cells loaded with peptides from a mutational crossreactivity library (X-scan). Heat maps show recognition motifs (threshold was set to 10% relative IFN-γ), which was subsequently screened in a human proteome database. (B) Peptides predicted in the X-scans were further filtered according to their predicted HLA-A2-binding. T2 cells were loaded with peptide pools (10⁻⁷ M per peptide) and recognition was assessed via IFN-γ ELISA. (C+D) Recognized off-target peptides were investigated more in-depth in dose-response assays (C) and in the B-cell derived cell line Ramos overexpressing the corresponding gene and HLA-A2 (D). (E) As a complementary approach, in silico predicted homologous peptides were screened by loading T2 cells with peptide pools (10⁻⁷ M per peptide). (F) Alloreactivity against 149 HLA-subtypes covering 98% of class-I HLA alleles was screened using single-HLA-transfected K562 cells. Data are shown as means of n = 3 donors ± SEM.

Fig. 5: Supercharged TCR-T product demonstrates higher TCR expression and higher cytotoxicity against cancer cells while retaining specificity. (A) To create a Supercharged PRAME TCR-T product, TCR expression and function was further enhanced by dual T cell armoring (Co-stim CD8 CoR and FAS-TNFR) and using gene editing combined with endogenous TCR knockout. We selected the less promiscuous TCR1 as lead candidate and compared the Supercharged TCR-T product to the previously used 2nd generation product (virally transduced T cells co-expressing TCR and WT CD8 CoR). In both cases a mix of CD4 and CD8 T cells was analyzed. (B) pMHC-Dextramer binding and TCR vbeta surface expression of Supercharged product compared to 2nd Gen product measured by median fluorescence intensity (MFI). Representative contour plots of Dextramer stainings are displayed in (C). (D) TCR-T cells were co-cultured with GFP-expressing NCI-H1703 or Hs695T cells at an E:T-ratio of 1:1 or 1:2, respectively, and green fluorescence area was monitored on an IncuCyte live imaging microscope. At indicated time points, fresh target cells were added to rechallenge TCR-T cells. (E+F) X-scan assay and screening of predicted peptides of MyT TCRs Supercharged product. Data are shown as means of n = 3 donors \pm SEM.

Conclusions

- durable responses in hard-to-treat solid tumor indications

Also check our other posters: #3198, #4867, #4868 and #6109

No allo- or off-target-reactivity by lead MyT TCR candidates

• T-knife's MyT platform delivered best-in-class high-affinity PRAME TCRs

 Lead TCR candidate is highly specific and does not demonstrate off-target reactivity • Supercharged PRAME-TCR-T cells incorporating MyT TCR, a single-chain co-stimulatory CD8 CoR and a SwR in a gene editing process, provide potential to induce deep and